المضاعف المشترك الاصغر للعددين ٥ و٤ هو
جدول ال
المضاعف المشترك الاصغر للعددين ٥ و٤ هو ، علم الرياضيات من العلوم الهامة، والتي يتم الاعتماد عليها في مختلف الأنشطة اليومية، كالعمليات التجارية، والمصرفية، وغيرها من الأمور، ويعتمد هذا العلم بشكل أساسي على ثلاث عمليات رئيسية هي الجمع والطرح، والضرب والقسمة.
المضاعف المشترك الاصغر للعددين ٥ و٤ هو
المضاعف المشترك الاصغر للعددين ٥ و٤ هو، إن الخيار الصحيح والمناسب لهذا السؤال هو “20”، حيث أن المضاعف المشترك الأصغر لمجموعة من الأعداد هو عبارة عن أقل عدد يقبل القسمة على جميع تلك الأعداد في آن واحد، ودون وجود باق لعملية القسمة، أي الناتج هو عدد صحيح، ويعتمد هذا المفهوم الرياضي بشكل أساسي على خواص قابلية القسمة، ومفهوم العوامل الأولية لعدد ما.[1]
شاهد أيضًا: المضاعف المشترك الاصغر للعددين 15 و 40
كيفية حساب المضاعف المشترك الأصغر لعددين
إن حساب المضاعف المشترك الأصغر لعددين ما، هو عملية بسيطة، لا تحتاج للتعقيد، ويمكن القيام بها باتباع طريقة التحليل إلى عوامل أولية، وذلك وفق الخطوات التالية:
- تحليل كل من العدد الأول والثاني إلى عواملهما الأولية: حيث العامل الأولي هو كل عدد لا يقبل القسمة إلا على نفسه وعلى الواحد فقط.
- كتابة العوامل الأولية لكل من العددين على شكل أس: حيث يتم ملاحظة العدد الأولي 2 مثلًا في العدد الأولي الذي تم تحليله، قد تكرر 4 مرات، فنكتب 2 مرفوعة للأس 4، وهكذا.
- أخد العوامل المشتركة ذات الأس الأكبر: أي العوامل الأولية التي تكررت بين كلا العددين المحللين، وبأكبر أس.
- حساب المضاعف المشترك الأصغر: يتم ذلك بضرب مجموعة الأعداد التي تم الحصول عليها من الخطوة السابقة، والناتج هو المضاعف المشترك الأصغر.
مفهوم قابلية القسمة
إن قابلية القسمة تشير إلى أن عدد ما يقبل القسمة على آخر أصغر منه، دون وجود باقي لعملية القسمة، وتوجد لبعض الأعداد طرق خاصة لاكتشاف إذا كان عدد ما يقبل القسمة عليها، ومنها:
- قابلية القسمة على 2: إذا كان آحاد العدد زوجيًا فهو يقبل القسمة على 2 دون باقي.
- قابلية القسمة على 3: يجب أن يكون مجموعة خانات العدد يساوي ال3 أو أحد مضاعفاتها.
- قابلية القسمة على 5: يقبل عدد ما القسمة على 5 إذا كان آحاد هذا العدد 0 أو 5.
وفي الختام تكون قد تمت الإجابة على المضاعف المشترك الاصغر للعددين ٥ و٤ هو، كما تم شرح مفهوم المضاعف المشترك الأصغر، وكيفية إيجاده، بالإضافة إلى توضيح مصطلح قابلية القسمة.