الفرق بين المعادلة والمتباينة .. حل المعادلة والمتباينة وأنواعها
جدول ال
الفرق بين المعادلة والمتباينة من الأشاء التي يتم دراستها في مباحث الرياضيات، حيث يتم كتابة المعادلة بمساواة تعبير جبري بتعبير جبري اخر لينتج لدينا ما يسمى بالمعادلة الرياضية. وعندما نكتب المعادلة يكون لدينا تعبير على الطرف الأيسر و تعبير آخر على الطرف الأيمن بحيث يكون بينهما علامة المساواة, لأن التعبيرين يجب أن يكونان مساويين لبعضهما البعض. كما أن المتباينة أيضًا لها طرفان أيمن وأيسر، إلا أن المتباينة تختلف في بنيتها وفي العلامة التي تفصل بين الطرفين الأيمن والأيسر. مما يحدث اختلافًا كبيرًا في طريقة حلها. [1]
الفرق بين المعادلة والمتباينة
كما ذكرنا سابقا فإن المعادلة نكتبها عندما نحتاج الى مساواة تعبيرين جبريين ببعضهما، فينشأ طرفان بينهما اشارة مساواة. إلا أن الطلبة قد يتعرضون لمواقف في حياتهم اليومية تتطلب اتخاذ قرار أو إجراء مقارنات بين المقادير والكميات المختلفة، وهذا يتطلب منهم فهم رموز المقارنات التي تفصل بين التعبيرين، وفهم العمليات الحسابية الخاصة بها، وفهم رموزها، والمهارات المتعلقة بها. إذا فإن العلاقــة الرياضــية التــي تشــمل أحــد الرمــوز (>، <، <، >)، تسـمى متباينـة. وتحتـــــل بدورها حيـــــزًا مهمـــــًا فـــــي مفـــــاهيم الرياضـــــيات الأساسية، لأنها ترتبط ارتباطها بقضـايا ومفـاهيم رياضـية متنوعـة، كمـا يمكنهـــا أن تشـــكِّل مـــدخلًا ذا أهميـــة خاصـــة للكثيـــر مـــن الموضـــوعات الرياضية مثل المعادلات والاقترانات. ويمكن تعريف المتباينة بأنها؛ علاقة رياضية يمكن من خلالها ترتيب الأعداد أو الكميات. وحلها يعني ايجاد قيمة المتغير أو المتغير التي تجعل علاقة الترتيب صحيحة.
حل المعادلة والمتباينة وأنواعها
نحتاج في حياتنا النوعية لحل العديد من المعادلات والمتباينات. ولا بد من معرفة أن المعادلات والمتباينات لها أنواع متعددة، ولكل نوع منها طريقة حل خاصة، نذكرها هنا:
حل المتباينة وأنواعها
ولعل دراسة الاقترانات وخصائصها وتطبيقاتها، من الموضوعات ذات الأهمية في الرياضيات، ويتطلب ذلك أن يكون على وعي بإيجاد مجموعة حل المتباينة بمختلف أنواعها: الخطية، وغير الخطية، والكسرية، فعلى سبيل المثال اذا احتجنا لايجاد فترات التزايد والتناقص في المعادلة التربيعية لا بد لنا من حل المعادلة، وايجاد مجموعة حلها.
وقد تتفاوت مستويات العمليات العقلية في حل المتباينة، بين إجراء بعض العمليات الحسابية البسيطة إلى العمليات الرياضية أكثر صعوبة، مثل ها في المتباينات الكسرية، والمتباينات غير الخطية، حيث أن درجة صعوبتها تعتمد على نوع المتباينة ودرجتها، وكثيراً ما يتطلب حلها البحث في إشارة المقدار على خط الأعداد. وبالتالي لا بد من التركيز في حل المتباينات والتفريق بينها وبين المعادلة ومعرفة كيفية التعامل معها تبعا لنوعها، بالاضافة الى التدرب على الأولويات، ومعرفة كيف يتغير اتجاه الاشارة عند الضرب بالاشارة السالبة. [2]
حل المعادلة وأنواعها
هناك أنواع متعددة للمعادلات، وتختلف طريقة حلها تبعا لاختلاف نوعها، وسنذكر فيما يلي نوعين من المعادلات:
- المعادلات الخطية
المعادلة الخطية هي معادلة جبرية من الدرجة 1. وهناك أنواع من المعادلات الخطية، على سبيل المثال:
معادلة خطية لمتغير واحد مثل؛ (4x + 5 = 0)،
معادلة خطية بمغيرين مثل؛ (4x + 5y = 10)
معادلة خطية بثلاث متغيرات مثل؛ (x + y + 5z = 0)
معادلة خطية بأربع متغيرات مثل؛ (4x = 3w + 5y + 7z)
ويمكن حل المعادلة الخطية بمتغير واحد عن طريق وضع المتغير وحده على جهة، والأرقام على الجهة الثانية، أي بجعل المتغير موضوعا للقانون، مراعيا بذلك أولويات الجمع والطرح. ويتم حل المعادلة الخطية بمتغيرين عن طريق وضع نظام بمعادلتين، حيث يتم تعويض احداهما بالأخرى أو بطريقة الحذف والاضافة، وتحتاج المعادلة الخطية بثلاث متغيرات لحلها إلى نظام مكون من ثلاث معادلات وهكذا. [3]
- المعادلة التربيعية
هي معادلةٌ جبريةٌ ثلاثية الحدود من الدرجة الثانية، والشكل القياسي للمعادلة التربيعية يتمثل بالشكل الآتي (0=ax2 + bx + c)، حيث أن (a,b,c) أعداد حقيقية ثابتة، مع شرط أن a لا يساوي الصفر وإلا تحولت المعادلة إلى خطيةٍ.
ويمكل حل المعادلة التربيعية بعدة طرق منها التحليل إلى العوامل الأولية بنقل كل الحدود الى جهة وجعل الصفر في الجهة الثانية، ثم تحليل العبارة إلى حاصل ضرب مقدارين خطيين، ومساواة كل مقدار بالصفر وحلها لايجاد قيمة كل متغير. كما أن هناك طرق اخرى مثل اكمال المربع واستخدام القانون العام. وهناك نوع خاص من المعادلة التربيعية يمكن حلها عن طريق الفرق بين مربعين، وهي عندما تتكون المعادلة من المتغير مرفوع للقوة الثانية والرقم الاخر يشكل مربع كامل.[4]
ومما سبق عرفنا أن الفرق بين المعادلة والمتباينة رياضيًا، هو بوجود علامة المساواة في المعادلة في حين أن المتباينة تحتوي على إحدى رموز المقارنة التي تفصل بين طرفي المعادلة، وهناك خطوات محددة لحل كل نوع من أنواع المتباينات أو المعادلات.